Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Invest Ophthalmol Vis Sci ; 65(5): 22, 2024 May 01.
Article En | MEDLINE | ID: mdl-38743414

Purpose: To describe the clinical, electrophysiological and genetic spectrum of inherited retinal diseases associated with variants in the PRPH2 gene. Methods: A total of 241 patients from 168 families across 15 sites in 9 countries with pathogenic or likely pathogenic variants in PRPH2 were included. Records were reviewed for age at symptom onset, visual acuity, full-field ERG, fundus colour photography, fundus autofluorescence (FAF), and SD-OCT. Images were graded into six phenotypes. Statistical analyses were performed to determine genotype-phenotype correlations. Results: The median age at symptom onset was 40 years (range, 4-78 years). FAF phenotypes included normal (5%), butterfly pattern dystrophy, or vitelliform macular dystrophy (11%), central areolar choroidal dystrophy (28%), pseudo-Stargardt pattern dystrophy (41%), and retinitis pigmentosa (25%). Symptom onset was earlier in retinitis pigmentosa as compared with pseudo-Stargardt pattern dystrophy (34 vs 44 years; P = 0.004). The median visual acuity was 0.18 logMAR (interquartile range, 0-0.54 logMAR) and 0.18 logMAR (interquartile range 0-0.42 logMAR) in the right and left eyes, respectively. ERG showed a significantly reduced amplitude across all components (P < 0.001) and a peak time delay in the light-adapted 30-Hz flicker and single-flash b-wave (P < 0.001). Twenty-two variants were novel. The central areolar choroidal dystrophy phenotype was associated with 13 missense variants. The remaining variants showed marked phenotypic variability. Conclusions: We described six distinct FAF phenotypes associated with variants in the PRPH2 gene. One FAF phenotype may have multiple ERG phenotypes, demonstrating a discordance between structure and function. Given the vast spectrum of PRPH2 disease our findings are useful for future clinical trials.


Electroretinography , Peripherins , Phenotype , Retinal Dystrophies , Visual Acuity , Humans , Peripherins/genetics , Middle Aged , Adult , Male , Female , Adolescent , Retinal Dystrophies/genetics , Retinal Dystrophies/physiopathology , Retinal Dystrophies/diagnosis , Aged , Visual Acuity/physiology , Child , Young Adult , Child, Preschool , Tomography, Optical Coherence , Mutation , Fluorescein Angiography , Genetic Association Studies , Retrospective Studies , DNA Mutational Analysis , DNA/genetics , Pedigree
2.
CRISPR J ; 7(2): 100-110, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579141

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.


CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Reactive Oxygen Species/metabolism , Virulence , Gene Editing , Gene Expression , Eye Proteins/genetics , Eye Proteins/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
3.
Biomolecules ; 14(3)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38540785

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.


Macular Degeneration , Humans , Mutation , Penetrance , Pedigree , Macular Degeneration/genetics , Retina , Phenotype , ATP-Binding Cassette Transporters/genetics , Eye Proteins , Cadherin Related Proteins , Nerve Tissue Proteins/genetics
4.
Ophthalmol Retina ; 8(2): 174-183, 2024 Feb.
Article En | MEDLINE | ID: mdl-37209970

PURPOSE: To evaluate the outer retinal bands using OCT in ABCA4- and PRPH2-associated retinopathy and develop a novel imaging biomarker to differentiate between these 2 genotypes. DESIGN: Multicenter case-control study. PARTICIPANTS: Patients with a clinical and genetic diagnosis of ABCA4- or PRPH2-associated retinopathy and an age-matched control group. METHODS: Macular OCT was used to measure the thickness of the outer retinal bands 2 and 4 by 2 independent examiners at 4 retinal loci. MAIN OUTCOME MEASURES: Outcome measures included the thicknesses of band 2, band 4, and the band 2/band 4 ratio. Linear mixed modeling was used to make comparisons across the 3 groups. Receiver operating characteristic (ROC) analysis determined the optimal cutoff for the band 2/band 4 ratio to distinguish PRPH2- from ABCA4-associated retinopathy. RESULTS: We included 45 patients with ABCA4 variants, 45 patients with PRPH2 variants, and 45 healthy controls. Band 2 was significantly thicker in patients with PRPH2 compared with ABCA4 (21.4 vs. 15.9 µm, P < 0.001) variants, whereas band 4 was thicker in patients with ABCA4 variants than those with PRPH2 variants (27.5 vs. 21.7 µm, P < 0.001). Similarly, the band 2/band 4 ratio was significantly different (1.0 vs. 0.6 for PRPH2 vs. ABCA4, P < 0.001). The area under the ROC curve was 0.87 for either band 2 (> 18.58 µm) or band 4 (< 26.17 µm) alone and 0.99 (95% confidence interval: 0.97-0.99) for the band 2/band 4 ratio with a cutoff threshold of 0.79, providing 100% specificity. CONCLUSIONS: We report an altered outer retinal band profile whereby the band 2/band 4 ratio was able to discriminate between PRPH2- and ABCA4-associated retinopathy. This may have future clinic utility in predicting the genotype and provide further insight into the anatomic correlate of band 2. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Macular Degeneration , Retinal Diseases , Humans , Macular Degeneration/diagnosis , Case-Control Studies , Tomography, Optical Coherence/methods , ATP-Binding Cassette Transporters/genetics , Retinal Diseases/diagnosis , Retinal Diseases/genetics
6.
Ophthalmic Genet ; 44(4): 352-360, 2023 08.
Article En | MEDLINE | ID: mdl-37013444

BACKGROUND: To establish the proportion of patients with retinitis pigmentosa (RP) meeting the Australian fitness to drive (FTD) visual standards. METHODOLOGY: A prospective consecutive case series of patients with a clinical or genetic diagnosis of RP. Data on age at symptom onset, current driving status, inheritance pattern, better eye visual acuity (BEVA), binocular Esterman visual field (BEVF) parameters, genotype and ability to meet the driving standards based on BEVA and BEVF were collected. Outcome measures included the proportion of RP patients overall meeting the standards and clinical predictors for passing. A sub-analysis was performed on those RP patients who reported to drive. Change in BEVA and BEVF parameters across age in specific genotype groups was assessed. RESULTS: Overall, 228 patients with RP had a BEVF assessment. Only 39% (89/228) met the driving standards. Younger age at the time of testing was the only significant predictor (p < 0.01) for passing. Of the 55% of RP patients who reported to drive, 52% (65/125) met the standards, decreasing to 14% in the 56- to 65-year-old age group. RP patients harbouring mutations in HK1 or RHO genes may have slower rates of decline in their VF parameters. CONCLUSION: Nearly 40% of RP patients met the driving standards. However, almost 50% of RP drivers were unaware of their failure to meet the current standards. BEVF testing is essential in the assessment of RP patients who are still driving. Phenotype and genotype predictors for passing the standards warrant further investigation.Abbreviation: FTD, fitness to drive; IRD, inherited retinal disease; RP, retinitis pigmentosa; RHO, rhodopsin; HK1, hexokinase 1; PRPF31 pre-mRNA processing factor 31; RPGR, retinitis pigmentosa GTPase regulator; VF, visual field; BEVA, better eye visual acuity; BEVF, binocular Esterman visual field.


Frontotemporal Dementia , Retinitis Pigmentosa , Humans , Prospective Studies , Australia , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Eye Proteins/genetics , Mutation , Electroretinography
7.
Invest Ophthalmol Vis Sci ; 64(1): 3, 2023 01 03.
Article En | MEDLINE | ID: mdl-36607619

Purpose: Female carriers of RPGR mutations demonstrate no significant retinal dysfunction or structural change despite a characteristic tapetal-like reflex. In this study, we examined localized changes of pointwise sensitivity (PWS) and cone density (CD) using microperimetry (MP) and adaptive optics (AO) imaging in female carriers of RPGR mutations. Methods: In this cross-sectional case-control study, MP (MAIA, 10-2 test grid) and AO imaging (rtx1) were performed in female carriers of RPGR mutations and unrelated age-matched healthy controls. PWS at 68 loci located 1 degree to 9 degrees away from the preferred retinal locus and CD at 12 loci located 1 degree to 3 degrees away from the foveal center were measured. Severity of defect was defined by standard deviation (SD) from age-matched healthy control means: normal (<1 SD from normal average), moderate defect (1-2 SD from normal average), and severe defect (>2 SD from normal average). Results: Twelve patients from seven unrelated families were enrolled. Seven patients were asymptomatic, 5 of whom had visual acuity 20/20 or better in both eyes. PWS and CD were available in 12 and 8 patients, respectively. Severe PWS and CD defect in at least 1 test location was observed in 10 of 12 patients and 7 of 8 patients, respectively. Among the five asymptomatic patients who had normal visual acuity, severe PWS and CD defects were observed in three of five and four of five patients, respectively. Conclusions: MP and AO imaging revealed early functional and structural changes in asymptomatic RPGR mutation carriers and should be considered in clinical assessment of these patients.


Tomography, Optical Coherence , Visual Field Tests , Humans , Female , Cross-Sectional Studies , Case-Control Studies , Tomography, Optical Coherence/methods , Mutation , Eye Proteins/genetics
8.
Ophthalmol Retina ; 7(1): 81-91, 2023 01.
Article En | MEDLINE | ID: mdl-35792359

PURPOSE: To establish disease progression rates in total lesion size (TLS), decreased autofluorescence (DAF) area, total macular volume (TMV), and mean macular sensitivity (MMS) in PRPH2-associated retinal dystrophy. DESIGN: Single-center, retrospective chart review. PARTICIPANTS: Patients with heterozygous pathogenic or likely pathogenic PRPH2 variants. METHODS: Patients who underwent serial ultrawide-field (UWF) fundus autofluorescence (FAF), OCT, and Macular Integrity Assessment microperimetry with at least 1 year of follow-up were included. Linear correlation was performed in eyes of all patients to determine the rate of change over time. MAIN OUTCOME MEASURES: Outcome measures included changes in TLS, DAF area, TMV, and MMS. RESULTS: Twelve patients (mean age, 55) from 10 unrelated families attended 100 clinic visits, which spanned over a mean (SD) of 4.7 (2.0) years. Mean (SD) TLS and DAF radius expansion were 0.14 (0.12) and 0.10 (0.08) mm/year, respectively. Mean (SD) TMV change was -0.071 (0.040) mm3/year with no interocular difference (P = 0.20) and strong interocular correlation (r2 = 0.88, P < 0.01). Mean (SD) MMS change was -0.10 (1.25) dB/year. Mean macular sensitivity declined in 4 and improved in 6 patients. Mean macular sensitivity was subnormal despite a TMV within the normal range. CONCLUSIONS: Serial measurements of UWF-FAF-derived TLS and DAF showed slow expansion. Total macular volume might be a more sensitive measure than MMS in detecting disease progression.


Disease Progression , Retinal Dystrophies , Humans , Middle Aged , Fundus Oculi , Retinal Dystrophies/pathology , Retrospective Studies
9.
Exp Eye Res ; 225: 109276, 2022 12.
Article En | MEDLINE | ID: mdl-36209838

The ATP-binding cassette subfamily A member 4 gene (ABCA4)-associated retinopathy, Stargardt disease, is the most common monogenic inherited retinal disease. Given the pathogenicity of numerous ABCA4 variants is yet to be examined and a significant proportion (more than 15%) of ABCA4 variants are categorized as splice variants in silico, we therefore established a fibroblast-based splice assay to analyze ABCA4 variants in an Australian Stargardt disease cohort and characterize the pathogenic mechanisms of ABCA4 variants. A cohort of 67 patients clinically diagnosed with Stargardt disease was recruited. Genomic DNA was analysed using a commercial panel for ABCA4 variant detection and the consequences of ABCA4 variants were predicted in silico. Dermal fibroblasts were propagated from skin biopsies, total RNA was extracted and the ABCA4 transcript was amplified by RT-PCR. Our analysis identified a total of 67 unique alleles carrying 74 unique variants. The most prevalent splice-affecting complex allele c.[5461-10T>C; 5603A>T] was carried by 10% of patients in a compound heterozygous state. ABCA4 transcripts from exon 13 to exon 50 were readily detected in fibroblasts. In this region, aberrant splicing was evident in 10 out of 57 variant transcripts (18%), carried by 19 patients (28%). Patient-derived fibroblasts provide a feasible platform for identification of ABCA4 splice variants located within exons 13-50. Experimental evidence of aberrant splicing contributes to the pathogenic classification for ABCA4 variants. Moreover, identification of variants that affect splicing processes provides opportunities for intervention, in particular antisense oligonucleotide-mediated splice correction.


ATP-Binding Cassette Transporters , Retinal Diseases , Humans , Stargardt Disease/genetics , Introns/genetics , ATP-Binding Cassette Transporters/genetics , Australia , Exons/genetics , Mutation , Retinal Diseases/genetics , Fibroblasts , Pedigree
10.
Retina ; 42(8): 1545-1559, 2022 08 01.
Article En | MEDLINE | ID: mdl-35344533

PURPOSE: To investigate concordance in symptom onset, area of dark autofluorescence (DAF), and growth rate (GR) between Stargardt disease siblings at an age-matched time point. METHODS: In this retrospective longitudinal study of sibling pairs with identical biallelic ABCA4 variants, age at symptom onset, best-corrected visual acuity, atrophy area, and effective radius of DAF on ultra-widefield fundus autofluorescence were recorded. Absolute intersibling differences for both eyes were compared with absolute interocular differences using the Mann-Whitney test. RESULTS: Overall 39 patients from 19 families were recruited. In 16 families, age-matched best-corrected visual acuity and DAF were compared between siblings. In 8 families, DAF GR was compared. The median (range) absolute difference in age at symptom onset between siblings was 3 (0-35) years. Absolute intersibling differences in age-matched best-corrected visual acuity were greater than interocular differences ( P = 0.01). Similarly, absolute intersibling differences in DAF area and radius were greater than interocular differences ( P = 0.04 for area and P = 0.001 for radius). Differences between absolute interocular and intersibling GR were not statistically significant ( P = 0.44 for area GR and P = 0.61 for radius GR). CONCLUSION: There was significant discordance in age-matched best-corrected visual acuity and DAF beyond the expected limits of interocular asymmetry. Lack of significant intersibling differences in GR warrants further investigation.


Electroretinography , Macular Degeneration , Stargardt Disease , ATP-Binding Cassette Transporters/genetics , Adolescent , Adult , Atrophy , Child , Child, Preschool , Fluorescein Angiography , Fundus Oculi , Humans , Infant , Infant, Newborn , Longitudinal Studies , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Retrospective Studies , Siblings , Stargardt Disease/diagnosis , Stargardt Disease/genetics , Tomography, Optical Coherence , Visual Acuity , Young Adult
11.
Genes (Basel) ; 12(12)2021 12 14.
Article En | MEDLINE | ID: mdl-34946930

Reported growth rates (GR) of atrophic lesions in Stargardt disease (STGD1) vary widely. In the present study, we report the longitudinal natural history of patients with confirmed biallelic ABCA4 mutations from five genotype groups: c.6079C>T, c.[2588G>C;5603A>T], c.3113C>T, c.5882G>A and c.5603A>T. Fundus autofluorescence (AF) 30° × 30° images were manually segmented for boundaries of definitely decreased autofluorescence (DDAF). The primary outcome was the effective radius GR across five genotype groups. The age of DDAF formation in each eye was calculated using the x-intercept of the DDAF effective radius against age. Discordance between age at DDAF formation and symptom onset was compared. A total of 75 eyes from 39 STGD1 patients (17 male [44%]; mean ± SD age 45 ± 19 years; range 21-86) were recruited. Patients with c.3113C>T or c.6079C>T had a significantly faster effective radius GR at 0.17 mm/year (95% CI 0.12 to 0.22; p < 0.001 and 0.14 to 0.21; p < 0.001) respectively, as compared to those patients harbouring c.5882G>A at 0.06 mm/year (95% CI 0.03-0.09), respectively. Future clinical trial design should consider the effect of genotype on the effective radius GR and the timing of DDAF formation relative to symptom onset.


ATP-Binding Cassette Transporters/genetics , Stargardt Disease/genetics , ATP-Binding Cassette Transporters/metabolism , Adult , Aged , Aged, 80 and over , Female , Fluorescein Angiography/methods , Genotype , Humans , Macular Degeneration/genetics , Male , Middle Aged , Optical Imaging/methods , Retinal Pigment Epithelium/pathology , Tomography, Optical Coherence/methods , Visual Acuity/genetics
12.
Genes (Basel) ; 12(10)2021 09 28.
Article En | MEDLINE | ID: mdl-34680937

Retinitis pigmentosa 11 (RP11) is caused by dominant mutations in PRPF31, however a significant proportion of mutation carriers do not develop retinopathy. Here, we investigated the relationship between CNOT3 polymorphism, MSR1 repeat copy number and disease penetrance in RP11 patients and non-penetrant carriers (NPCs). We further characterized PRPF31 and CNOT3 expression in fibroblasts from eight RP11 patients and one NPC from a family carrying the c.1205C>T variant. Retinal organoids (ROs) and retinal pigment epithelium (RPE) were differentiated from induced pluripotent stem cells derived from RP11 patients, an NPC and a control subject. All RP11 patients were homozygous for the 3-copy MSR1 repeat in the PRPF31 promoter, while 3/5 NPCs carried a 4-copy MSR1 repeat. The CNOT3 rs4806718 genotype did not correlate with disease penetrance. PRFP31 expression declined with age in adult cadaveric retina. PRPF31 and CNOT3 expression was reduced in RP11 fibroblasts, RO and RPE compared with controls. Both RP11 and NPC RPE displayed shortened primary cilia compared with controls, however a subpopulation of cells with normal cilia lengths was present in NPC RPE monolayers. Our results indicate that RP11 non-penetrance is associated with the inheritance of a 4-copy MSR1 repeat, but not with CNOT3 polymorphisms.


Eye Proteins/genetics , Penetrance , Retinitis Pigmentosa/genetics , Adolescent , Adult , Aged , Cells, Cultured , Child , Eye Proteins/metabolism , Female , Genes, Modifier , Humans , Male , Middle Aged , Polymorphism, Genetic , Retina/metabolism , Retina/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Stem Cell Res ; 54: 102439, 2021 07.
Article En | MEDLINE | ID: mdl-34214897

Mutations in ABCA4 gene are causative for autosomal recessive Stargardt disease (STGD1), the most common inherited retinal dystrophy. Here, we report the generation of an induced pluripotent stem cell (iPSC) line from a STGD1 patient carrying biallelic c.[5461-10T>C;5603A>T];[6077T>C] mutations in the ABCA4 gene. Episomes carrying OCT4, SOX2, KLF4, L-MYC, LIN28 and mp53DD were employed for the reprogramming of patient-derived fibroblasts. This iPSC line expressed comparable pluripotency markers as in a commercially available human iPSC line, displayed normal karyotype and potential for trilineage differentiation, and were negative for both reprogramming episomes and mycoplasma test.


Induced Pluripotent Stem Cells , ATP-Binding Cassette Transporters/genetics , Cell Differentiation , Humans , Kruppel-Like Factor 4 , Mutation , Stargardt Disease
14.
Stem Cell Res ; 54: 102448, 2021 07.
Article En | MEDLINE | ID: mdl-34198153

Stargardt disease (STGD1) is the most common inherited retinal dystrophy and ABCA4 c.546--10 T>C is the most commonly reported splice mutation. Here, we generated and characterized two induced pluripotent stem cell (iPSC) lines from a STGD1 patient with compound heterozygous mutations in ABCA4 (c.[5461-10 T > C;5603A > T];[4163 T > C;455G > A]). Episomal vectors containing OCT4, SOX2, KLF4, L-MYC, LIN28 and mp53DD were employed to conduct the reprogramming of patient-derived fibroblasts. Both lines had a normal karyotype, displayed iPSC morphology, expressed pluripotency markers and showed trilineage differentiation potential. These lines can provide a powerful platform for further investigating the pathophysiological consequences of mutations in ABCA4.


Induced Pluripotent Stem Cells , ATP-Binding Cassette Transporters/genetics , Cell Differentiation , Cell Line , Humans , Kruppel-Like Factor 4 , Mutation , Stargardt Disease
15.
Genes (Basel) ; 12(6)2021 06 14.
Article En | MEDLINE | ID: mdl-34198599

PRPF31-associated retinopathy (RP11) is a common form of autosomal dominant retinitis pigmentosa (adRP) that exhibits wide variation in phenotype ranging from non-penetrance to early-onset RP. Herein, we report inter-familial and intra-familial variation in the natural history of RP11 using multimodal imaging and microperimetry. Patients were recruited prospectively. The age of symptom onset, best-corrected visual acuity, microperimetry mean sensitivity (MS), residual ellipsoid zone span and hyperautofluorescent ring area were recorded. Genotyping was performed using targeted next-generation and Sanger sequencing and copy number variant analysis. PRPF31 mutations were found in 14 individuals from seven unrelated families. Four disease patterns were observed: (A) childhood onset with rapid progression (N = 4), (B) adult-onset with rapid progression (N = 4), (C) adult-onset with slow progression (N = 4) and (D) non-penetrance (N = 2). Four different patterns were observed in a family harbouring c.267del; patterns B, C and D were observed in a family with c.772_773delins16 and patterns A, B and C were observed in 3 unrelated individuals with large deletions. Our findings suggest that the RP11 phenotype may be related to the wild-type PRPF31 allele rather than the type of mutation. Further studies that correlate in vitro wild-type PRPF31 allele expression level with the disease patterns are required to investigate this association.


Alleles , Eye Proteins/genetics , Phenotype , Retinitis Pigmentosa/genetics , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Mutation , Pedigree , Retinitis Pigmentosa/pathology
16.
Retina ; 41(12): 2578-2588, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34125082

PURPOSE: To establish a mutation-specific age-dependent ultra-widefield fundus autofluorescence (UWF-FAF) trajectory in a large Stargardt disease (STGD1) cohort using total lesion size (TLS) and to develop a clinical method for variant classification. METHODS: A retrospective study of patients with biallelic ABCA4 mutations that were evaluated with UWF-FAF. Boundaries of TLS, defined by stippled hyper/hypoautofluorescence, were outlined manually. Pathogenicity was assessed according to ACMG/AMP criteria, and mutation severities were classified based on the current literature. Age-dependent trajectories in TLS were examined in patients with nullizygous, mild, and intermediate mutations. Mutations of uncertain severities were classified using a clinical criterion based on age of symptom onset and TLS. RESULTS: Eighty-one patients with STGD1 (mean age = 42 ± 20 years and mean visual acuity = 20/200) were recruited from 65 unrelated families. Patients with biallelic null/severe variants (n = 6) demonstrated an increase in TLS during their second decade reaching a mean ± SD of 796 ± 29 mm2 by age 40. Those harboring mild mutations c.5882G>A or c.5603A>T had lesions confined to the posterior pole with a mean ± SD TLS of 30 ± 39 mm2. Intermediate mutations c.6079C>T or c.[2588G>C;5603A>T] in trans with a null/severe mutation had a mean ± SD TLS of 397 ± 29 mm2. Thirty-two mutations were predicted to cause severe (n = 22), intermediate (n = 6), and mild (n = 5) impairment of ABCA4 function based on age of symptom onset and TLS. CONCLUSION: Age-dependent TLS showed unique ABCA4 mutation-specific trajectories. Our novel clinical criterion using age of symptom onset and TLS to segregate ABCA4 mutations into three severity groups requires further molecular studies to confirm its validity.


ATP-Binding Cassette Transporters/genetics , DNA Mutational Analysis/classification , Mutation/genetics , Stargardt Disease/diagnostic imaging , Stargardt Disease/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Electroretinography , Female , Humans , Male , Middle Aged , Optical Imaging , Retrospective Studies , Severity of Illness Index , Tomography, Optical Coherence , Visual Acuity/physiology , Young Adult
17.
Stem Cell Res ; 54: 102403, 2021 07.
Article En | MEDLINE | ID: mdl-34034222

Two human iPSC lines were generated from dermal fibroblasts derived from a patient with retinitis pigmentosa caused by CRB1 mutation using episomal plasmids containing OCT4, SOX2, LIN28, KLF4, L-MYC and mp53DD. These clonal iPSC lines carry compound heterozygous mutations in CRB1 (c.2555 T > C and c.3014A > T). Both lines expressed pluripotency markers, displayed a normal karyotype and demonstrated the ability to differentiate into the three primary germ layers, as well as retinal organoids.


Induced Pluripotent Stem Cells , Retinitis Pigmentosa , Cell Differentiation , Cell Line , Eye Proteins/genetics , Fibroblasts , Humans , Kruppel-Like Factor 4 , Membrane Proteins , Mutation , Nerve Tissue Proteins , Retinitis Pigmentosa/genetics
18.
Transl Vis Sci Technol ; 10(2): 38, 2021 02 05.
Article En | MEDLINE | ID: mdl-34003923

Purpose: Biallelic crumbs cell polarity complex component 1 (CRB1) mutations can present as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), or cystic maculopathy. This study reports a novel phenotype of asymptomatic fenestrated slit maculopathy (AFSM) and examines macular volume profile and microperimetry as clinical trial end points in CRB1-associated retinopathies. Methods: Twelve patients from nine families with CRB1 mutation were recruited. Ultra-widefield (UWF) color fundus photography and autofluorescence (AF), spectral-domain optical coherence tomography (SD-OCT), microperimetry, and adaptive optics (AO) imaging were performed. Macular volume profiles were compared with age-matched healthy controls. Genotyping was performed using APEX genotyping microarrays, targeted next-generation sequencing, and Sanger sequencing. Results: We identified one patient with LCA, five patients with RP, and four patients with macular dystrophy (MD) with biallelic CRB1 mutations. Two siblings with compound heterozygote genotype (c.[2843G>A]; [498_506del]) had AFSM characterized by localized outer retinal disruption on SD-OCT and parafoveal cone loss on AO imaging despite normal fundus appearance, visual acuity, and foveal sensitivity. UWF AF demonstrated preserved para-arteriolar retinal pigment epithelium (PPRPE) in all patients with RP. Microperimetry documented preserved central retinal function in six patients. The ratio of perifoveal-to-foveal retinal volume was greater than controls in 89% (8/9) of patients with RP or MD, whereas central subfield and total macular volume were outside normal limits in 67% (6/9). Conclusions: AO imaging was helpful in detecting parafoveal cone loss in asymptomatic patients. Macular volume profile and microperimetry parameters may have utility as CRB1 trials end points. Translational Relevance: Macular volume and sensitivity can be used as structural and functional end points for trials on CRB1-associated RP and MD.


Eye Proteins , Retinitis Pigmentosa , Eye Proteins/genetics , Humans , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Retina , Retinitis Pigmentosa/diagnosis , Visual Field Tests
19.
Ophthalmic Genet ; 42(3): 266-275, 2021 06.
Article En | MEDLINE | ID: mdl-33624564

Background: Mutations in the RCC1 and BTB domain-containing protein 1 (RCBTB1) gene have been implicated in a rare form of retinal dystrophy. Herein, we report the clinical features of a 45-year-old Singaporean-Chinese female and her presymptomatic sibling, who each possesses compound heterozygous mutations in RCBTB1. Expression of RCBTB1 in patient-derived cells was evaluated.Materials and Methods: The natural history was documented by a series of ophthalmic examinations including electroretinography, fundus autofluorescence imaging, spectral-domain optical coherence tomography, visual field, microperimetry, and adaptive optics retinal imaging. Patient DNA was genetically analysed using a 537-gene Next Generation Sequencing panel and targeted Sanger sequencing. Expression of RCBTB1 in lymphocytes, fibroblasts, and induced pluripotent stem cells (iPSC) derived from the proband and healthy controls was characterized by quantitative PCR, Sanger sequencing, and western blotting.Results: The proband presented with left visual distortion at age 40 due to extrafoveal chorioretinal atrophy. Atrophy expanded at 1.3 (OD) and 1.0 (OS) mm2/year. Total macular volume declined by 0.09 (OD) and 0.13 (OS) mm3/year. Microperimetry demonstrated enlarging scotoma in both eyes. Generalised cone dysfunction was demonstrated by electroretinography. A retinal dystrophy panel testing revealed biallelic frameshifting mutations, c.170delG (p.Gly57Glufs*12) and c.707delA (p.Asn236Thrfs*11) in RCBTB1. The level of RCBTB1 mRNA expression was reduced in patient-derived lymphocytes compared to controls. RCBTB1 protein was detected in control fibroblasts and iPSC but was absent in patient-derived cells.Conclusions: Atrophy expansion rate and macular volume change are feasible endpoints for monitoring RCBTB1-associated retinopathy. We provide further functional evidence of pathogenicity for two disease-causing variants using patient-derived iPSCs.


Guanine Nucleotide Exchange Factors/genetics , Mutation/genetics , Retinal Dystrophies/genetics , Asian People/ethnology , Asian People/genetics , Blotting, Western , Electroretinography , Female , Fibroblasts/metabolism , Fluorescein Angiography , Gene Expression , Guanine Nucleotide Exchange Factors/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lymphocytes/metabolism , Middle Aged , Phenotype , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Singapore/epidemiology
20.
Stem Cell Res ; 51: 102154, 2021 03.
Article En | MEDLINE | ID: mdl-33429167

The human induced pluripotent stem cell (iPSC) lines LEIi015-A and LEIi015-B were derived from a patient with inherited retinal disease caused by compound heterozygous mutations in the SNRNP200 gene (c.[1792C>T];[3341T>C]). Dermal fibroblasts were transfected with episomal plasmids carrying transgenes encoding OCT4, SOX2, KLF4, L-MYC, LIN28, mir302/367 microRNA and shRNA for P53. The clonal iPSC lines LEIi015-A and LEIi015-B expressed iPSC markers, were free from genomic alterations and demonstrated trilineage differentiation potential.


Induced Pluripotent Stem Cells , Retinal Diseases , Cell Differentiation , Cell Line , Fibroblasts , Humans , Kruppel-Like Factor 4 , Mutation , Ribonucleoproteins, Small Nuclear
...